Tunable SFP+ is one type of DWDM transceiver. It's widely used in the DWDM system Tunable SFP+ transceivers are often two to four times more costly on the market than DWDM SFP+ transceivers. Many may believe that DWDM SFP+ transceivers are sufficient in the DWDM system and ask why tunable SFP+ transceivers are also required. This article will present what is a tunable DWDM SFP+ transceiver and clarify in detail why they need to be used in DWDM systems.
What’s Tunable DWDM SFP+ Transceiver?
Tunable SFP+ transceivers are a fresh technique that is being developed for a few more years owing to the SFP+'s limited power requirements. They are only accessible in DWDM form as the CWDM grid is too wide. A tunable SFP+ transceiver is also called a tunable DWDM SFP+ transceiver.
A tunable SFP+ transceiver is fitted with an embedded 50GHz complete C-band tunable transmitter and a high-performance PIN display to fulfill ITU-T (50GHz DWDM ITU-T Full C-band) specifications. It uses the same hot-pluggable SFP+ footprint as the DWDM SFP+ transceiver. The main distinction between them is that DWDM SFP+ has a set range or lambda while the tunable SFP+ can change its on-site frequency to the necessary lambda. Tunable DWDM SFP+ transceivers allow us to alter infinite frequencies within the C-band DWDM ITU Grid and can be implemented to multiple kinds of equipment such as switches, routers and servers.
Why Tunable DWDM SFP+ Transceivers Are Used in DWDM Systems?
Fixed-wavelength SFP+ transceivers are frequently used as light sources in the field of optical communication in traditional DWDM devices. However, the disadvantages of DWDM SFP+ transceivers have been gradually revealed as the ongoing growth, implementation and advancement of optical communication technologies. The following is why tunable SFP+ transceivers are also required in DWDM systems.
On the one side, to prevent excessive interruption, it is vital to prepare backup SFP+ transceivers for each DWDM wavelength. A tiny amount of additional SFP+ transceivers are sufficient in traditional DWDM systems However, the amount of wavelengths in DWDM 50GHz has now entered the hundreds with technology growth.
A big amount of SFP+ transceivers with distinct frequencies may be needed in DWDM systems to assist dynamic wavelength assignment in the optical network and enhance network efficiency. But each transceiver's usage rate is very low resulting in a waste of resources. The advent of tunable DWDM SFP+ transceivers efficiently fixed this issue. With tunable SFP+ transceivers, distinct DWDM ranges can be configured and produced in the same light source, and these wavelength ranges and ranges all satisfy ITU-T (50GHz DWDM ITU-T Full C-Band) specifications.
In the optical fiber communication wave division multiplexing system optical add-drop multiplexer and optical cross-connection, optical switching tools, light source components and other applications tunable DWDM SFP+ transceivers have very big practical importance for flexible selection of operating wavelength.